Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal AgroParisTech université Paris-Saclay

Welcome to ECOSYS

UMR ECOSYS - Ecologie fonctionnelle et écotoxicologie des agroécosystèmes

RL2. Evaluation of the effects of the contaminants on the organisms and their functions

  • Biomarkers/bioindicators. Biomarkers and biological tests have been developed on i) oligochetes (earthworms and enchytraeids), from sub-individual to population level and ii) microorganisms, mainly at the community level. These organisms are deeply involved in soil functions (i.e. organic matter turnover, biogeochemical and nutrient cycles), and thus being relevant ecological and ecotoxicological models. Various endpoints have been investigated in relation with biochemical and cellular state and also their growth, behavior and activities. The importance of using representative species in ecotoxicological tests of pesticides have been underlined, due to significant differences in sensitivity to pesticides among earthworm species (Pelosi et al., 2013, 2014, 201;, Rombke et al., 2017). The observed difference in sensitivity can be explained by different ecological traits, relating to feeding activity and behavior that could influence the route of exposure to contaminants.
    Individual scale cannot be applied to the soil microbial compartment, while microorganisms provide numerous soil functions and have short-term response to environmental changes. Several indicators of the soil quality were thus developed in a specific or generic way through descriptive approaches. In order to have proxies of these functions, bioassay based on enzymatic activities of the whole soil or specific microbial groups were chosen and developed. However, in an ecotoxicological point of view, many microbial or enzymatic activities were poorly specific or sensitive to the contamination, being poorly robust to confounding factors (i.e. organic matter content or soil pH) and they are supported by a wild diversity of microorganisms (high functional redundancy). Thus for more specific concerns about exposure of the microbial communities to contaminants, the PICT approach have been developed due to the specificity of underlying mechanisms of response to a class of contaminant (i.e. community tolerance acquisition). It appeared as a suitable tool to highlight long term effect or recurrent exposure to a given contaminant. We developed several microbial bioassays with different endpoints depending on the contaminants and its modes of action (i.e soil algae assay for herbicides, nitrification assay for metals and antibiotics, Crouzet and Berard, 2017). A main result in relation with organic waste recycling showed no impact of ABs and TE on soil microbial communities, in long term field experiments (CEMABS project). 
  • Long-term relationship fate-exposition-effect. We worked on the long-term effects where the residual but ongoing exposition to contaminants is hypothesized to decrease with time until sublethal levels of bioavailable contaminants for organisms. Confounding factors are thus expected to have greater importance. In such context, we showed that the classical indicators based on the concept of toxicity are not adapted because not enough robust to confounding factors, little sensitive showing no effect, and non-pertinent to integrate the adaptation capacity of the organisms and the communities (change in the community structures associated or not to functional redundancy). In the field and at the scale of the microbial community, the application of the PICT concept allowed to assess that chronical low doses exposition of one contaminant induced a functional tolerance that could be assessed in the laboratory (CEMABS project). Results are consistent with the fact that even on the long-term selection pressure does exist and that the contaminant is still bioavailable while no effects can be simply shown.
  • Choice of biological models and observation in natura: A large work was done to better evaluate the relevance of our ecological  models used  in ecotoxicology. More specifically, we evaluated both the sensitivity of ubiquitous earthworms found in agricultural soils compared to those used in homologation tests (Pelosi et al., 2013), and the interest of using Enchytraeids as bioindicators of anthropic disturbances or practices of agricultural management (Pelosi and Römbke, 201;, Römbke et al., 2017) (Fig. 20). We were also interested in producing data evaluating the differences in sensitivity to various contaminants between earthworms and Enchytraeids, at the biological scale of population and communities, issued from comparisons of observations in the field and ex situ (Bart et al., 2017; Amossé et al., 2018, ANSES project). We also initiated studies at the spatial scale of landscapes to assess the impact of semi-natural vegetation features on the transfer of pesticides and the related accumulation in various compartments linked to the food chain including soil, earthworms, carabidaes and micromammals) (RESCAPE and PING projects; Bertrand and Pelosi, 2017).
  • Modeling and risk assessment. In order to evaluate the impact of contaminants on the ecological functions fulfilled by earthworms, i.e. the non-intentional effects on contaminants, we adopted a strategy aiming at conducting in parallel laboratory and field experiments. These experiments were used to acquire data on the life cycle of the chosen earthworm and compute a bioenergetic model in the absence then in the presence of contaminant (Bart et al., 2017; 2018). New data, especially in terrestrial ecotoxicology were thus obtained on impact of pesticides on the reproduction and on the health of the following generations, as well as the influence of the age of the earthworm when exposed. The data are then used to parametrize a biological model coupled to a toxicocinetic-toxicodynamic model that will give access to the impact on specific ecological functions linked for example to the C or N cycles (ANSES project).