Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal AgroParisTech université Paris-Saclay

Welcome to ECOSYS

UMR ECOSYS - Ecologie fonctionnelle et écotoxicologie des agroécosystèmes

RL3. Biological functioning of ecosystems and agro-ecology

Research line 3 focuses on crop ecophysiology to (1) quantify the impacts of biotic and abiotic stresses, (2) identify the adaptive strategies of a plant stand under constraints and (3) contribute to the development and evaluation of innovative management practices.

We study genetically pure or mixed cultivated annual species (wheat, rapeseed). The preferred integration levels are the plant and the cultivated stand, and we start developing approaches that facilitate the change of scale toward the landscape in relation to RL1. The constraints considered are mainly nitrogen nutrition, leaf pathogenic fungi (rust, septoria) and atmospheric contaminants (ozone), as single factors or in interaction. Our work goes back and forth between the understanding of the processes involved and their integration at the stand level, with two main foci:

  • Biological processes of plants under stress and its genetic variability. These researches aimed to produce knowledge on the processes by which the biotic and abiotic environment impacts the structural and functional characteristics of plants and stands, and in return how the functioning of plants impacts their environment, such as the growth of pathogens or the emission in the atmosphere of nitrogen or volatile organic compounds. An originality of our works was the importance given to the architecture of plant and stands, which plays a major role on microclimate and transfer. During the last term period, we showed that; the plasticity of plant architecture response to floral damage was genetically variable (Pinet et al., 2015) and; nitrogen stress, plants states and climate modified the development of foliar pathogenic fungi (Bancal et al., 2016; Robert et al., 2018); inter-plant heterogeneity within a canopy could be modelled with a limited number of parameters (Baey et al., 2018); the mechanisms of defense and adaptation of cells to oxidative stress involved glutathione disulfide with mechanisms yet to be elucidated (Rahantaniaina et al., 2017).
  • Modeling the environmental response of whole stand including plants interactions. The practical outcomes are to identify levers and produce indicators for optimizing crop management, and selection. These works concern genetically homogeneous or heterogeneous stands such as associations of species or varieties. The targeted variables concern crop production, but also environmental impact such as fluxes of spore and GHG out of plots. Interactions and feedbacks between system components are explicit in simulation models. Besides we also use top-down approaches, based on the analysis of the relationships between variables measured within the system. During the last term period, we implemented novel schemes that integrate the C and N metabolisms processes in plant models (Barillot et al., 2006ab); we analyzed the genetic variability of nitrogen utilization efficiency under nitrogen stress (RAPSODYN project, V. Vazquez-Carrasquer PhD) ; we showed that worms were necessary to improve organic nitrogen nutrition efficiency (J. Barthod PhD, 2017); we implemented generic 3D plant-pathogen models (Garin et al., 2014) which showed that septoria greatly affected brown rust development (Garin et al., 2018) and was strongly limited by early senescence (Robert et al., 2018); we further developed a new, ecological, consumer-resource model for wheat pathogens which showed that pathogen production increased with fertilization (Précigout et al., 2017); We also contributed to the identification of varieties, either escaping (ECHAP project) or tolerant (Bancal et al., 2015; Collin et al., 2018) to aerial fungal diseases; finally we developed conceptual models of oxidative stress at the cellular level (Tuzet et al., 2018).