Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech université Paris-Saclay

Welcome to ECOSYS

UMR ECOSYS - Ecologie fonctionnelle et écotoxicologie des agroécosystèmes

Poster 3 : Wheat_senescence

Poster 3
François Collin

A statistical analysis of G×E contribution to leaf senescence during grain filling in wheat

Senescence is a highly plastic trait but how (much) genotype or environment affect senescence is poorly understood. Recently, Bancal et al. (2015) linked physiological traits of healthy wheat (Triticum aestivum L.) crops to yield loss regarding disease pressure (Septoria tritici leaf blotch) in multiple environments. The relationships they described identified, inter alia, later leaf senescence without disease pressure as a potential trait raising tolerance, ie. the ability of a crop to maintain grain yield in presence of expressed disease (Ney et al., 2013). The aim of the study is to quantify environmental (E) and genetic (G) contributions affecting the leaf senescence and their interaction in a set of unstressed (well fertilized and disease-free) winter wheat crops in France.
The study used a dataset including 9 genotypes grown in 5 locations during 2 years (further details: “Expe. C” Bancal, 2015). In each experimental plot, timing of senescence (T) was estimated by the inflexion point of the senescence kinetics since heading stage: the response variable T was estimated per leaf layer. Explanatory variables consist of crop settings (stage dates, leaf profile, sink, etc.) and a wide range of climatic variables. Variance component analysis was first performed and estimated G×E contributions to T variations. Then random forest models were computed to classify and identify the most important variables for T estimations. The study highlights E as an important source of variation for T, but still G remains substantial. Besides, relevant variable classification was also obtained. For example: heading stage was the most important variable to estimate senescence timing of flag leaf and the proportion of upper leaves was also identified as an important variable to explain senescence of lower leaves.
The leaf growth and development conditions from 4th leaf emergence to anthesis affect the senescence onset in unstressed crops. As T was previously identified as a major trait leading to tolerance, this study opens the way to G×E alternatives to limit yield losses due to diseases.

Download documents