En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo AgroParisTech_Université Paris Saclay

Economie Publique

UMR Economie Publique

Soutenance

Rotem Zelingher soutiendra sa thèse le lundi 29 novembre 2021.

A AgroParisTech, 16 rue Claude Bernard à Paris, à 13h 30, amphi Coleou, Rotem Zelingher soutiendra sa thèse : "Prévision des prix des produits agricoles à l’aide de techniques d’apprentissage automatique".

 

Résumé :

Serait-il possible de développer un outil de prévision des prix des produits agricoles de base qui soit à la fois précis, interprétable et, surtout, accessible au plus grand nombre ? Grâce à un tel outil, la prévision et l’analyse des prix des denrées alimentaires pourrait sortir du domaine des scientifiques, économistes et financiers pour être mises en oeuvre par un public plus large, concerné par la sécurité alimentaire. Un tel outil permettrait à ceux qui n’ont pas la capacité financière ou le bagage technique appropriés de prévoir les prix des produits agricoles de base, un ou plusieurs mois à l’avance. Dans l’idéal, cet outil devrait être dynamique, de sorte que ses résultats pourraient évoluer en fonction du marché.

Ce doctorat explore la faisabilité de cette idée en trois parties.

L’objectif de la première partie est de tester la capacité de plusieurs modèles statistiques et d’apprentissage automatique à simuler les variations du prix du maïs en fonction des variations annuelles de production et de rendement du maïs observées dans les principales régions productrices. Deux approches sont testées : une approche quantitative, permettant de simuler les variations de prix de manière continue, et une approche de classification binaire permettant de calculer la probabilité d’augmentation ou de diminutions de prix. Dans la première partie de la thèse, les modèles sont ajustés aux données, évaluées avec des critères statistiques, puis utilisées pour identifier les régions du monde ayant une forte influence sur les variations de prix. Les résultats montrent que la production de maïs en Amérique du nord a, de loin, le plus fort impact sur les prix de cette culture et qu’il est possible d’établir une relation entre les variations de production en Amérique du nord et les variations du prix mondial du maïs.

Dans la deuxième partie de la thèse, les modèles développés dans la première partie sont adaptés pour effectuer des prévisions mensuelles de prix du maïs. Nous comparons les performances de ces modèles à celles de techniques prédictives souvent utilisées pour l’analyse des séries chronologiques. Nous montrons que, pour des prévisions à court terme n’excédant pas trois mois, les techniques d’analyse de séries chronologiques sont généralement plus précises ; elles permettent de prédire les variations prix de un à trois mois à l’avance directement à partir des variations de prix passées, sans utiliser d’information sur la production agricole. Par contre, pour réaliser des prédictions à un horizon temporel excédant trois mois, les méthodes d’apprentissage automatique s’avèrent être souvent plus précises. Ces dernières ont par ailleurs un avantage supplémentaire : nous montrons qu’elles permettent de réaliser des diagnostics sur les causes probables des variations de prix extrêmes et d’identifier des chocs de production à l’origine de ces variations.

Enfin, dans la troisième partie, nous étendons le travail réalisé sur le maïs à deux autres cultures très différentes - le soja (une légumineuse constituant la principale source de protéines végétales mondiale) et le cacao (une culture produite dans un nombre restreint de pays localisés en zone tropicale). Nous analysons la capacité des techniques de prévision mises au point dans la partie précédente à prédire les variations de prix du soja et du cacao et nous analysons également l’effet de l’échelle géographique (nationale ou continentale) considérée pour calculer les variations de production. Dans cette partie également, nous montrons comment les méthodes d’apprentissage machine peuvent être utilisées pour identifier les chocs de production à l’origine des chocs de prix. Globalement, cette thèse montre que les méthodes d’apprentissage automatique sont des outils potentiellement utiles à la fois pour comprendre l’impact de la production agricole sur les variations de prix et pour prédire ces variations plusieurs mois à l’avance. Ces approches sont assez faciles à appliquer et peuvent être calibrées avec des données de prix et de production publiquement accessibles. Elles peuvent ainsi contribuer à démocratiser l’analyse et la prévision des variations de prix agricoles.