Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Zone de texte éditable et éditée et rééditée



Clairet C, Lapalu N, Simon A, Soyer JA, Viaud M, Zehraoui E, Dalmais B, Fudal I, Ponts N. Nucleosome patterns in four plant pathogenic fungi with contrasted genome structures. [BioRXIV]

Ribeaucourt D, Saker S, Navarro D, Bissaro B, Drula E, Correia LO, Haon M, Grisel S, Lapalu N, Henrissat B, O'Connell RJ, Lambert F, Lafond M, Berrin JG. Identification of Copper-Containing Oxidoreductases in the Secretomes of Three Colletotrichum Species with a Focus on Copper Radical Oxidases for the Biocatalytic Production of Fatty Aldehydes.  Appl Environ Microbiol. 2021 Nov [DOI]

Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I. Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Res. 2021 Jun;29(2):219-236. Epub 2021 May 21.[DOI] 

Mercier A, Simon A, Lapalu N, Giraud T, Bardin M, Walker AS, Viaud M, Gladieux P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea. Phytopathology. 2021 Apr 8. Epub ahead of print. [DOI] [BioRXIV] 

Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol. 2021 Mar 23;19(1):55. [DOI]

top of page


Gazengel K, Lebreton L, Lapalu N, Amselem J, Guillerm-Erckelboudt AY, Tagu D, Daval S. pH effect on strain-specific transcriptomes of the take-all fungus. PLoS One. 2020 Jul 30;15(7):e0236429. [DOI]

top of page


de Vallée A, Bally P, Bruel C, Chandat L, Choquer M, Dieryckx C, Dupuy JW, Kaiser S, Latorse MP, Loisel E, Mey G, Morgant G, Rascle C, Schumacher J, Simon A, Souibgui E, Viaud M, Villalba F, Poussereau N (2019). A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants? Frontiers in Microbiology. [DOI]

Kilani J, Davanture M, Simon A, Zivy M, Fillinger S (2019). Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways. J Proteomics. 2019 Nov 13;212:103580. [DOI]

Porquier A, Moraga J, Morgant G, Dalmais B, Simon A, Sghyer H, Collado IG, Viaud M. (2019). Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics. DOI: 10.1007/s00294-019-00952-4 [DOI]

top of page


Dutreux F, Da Silva C, d'Agata L, Couloux A, Gay EJ, Istace B, Lapalu N, Lemainque A, Linglin J, Noel B, Wincker P, Cruaud C, Rouxel T, Balesdent MH, Aury JM. De novo assembly and annotation of three Leptosphaeria genomes using Oxford Nanopore MinION sequencing. Sci Data. 2018 Nov 6;5:180235. [DOI]

Robin GP, Kleemann J, Neumann U, Cabre L, Dallery J-F, Lapalu N, O’Connell RJ. (2018). Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, Golgi bodies and microtubules. Frontiers in Plant Science, 02 May 2018 [DOI]

Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. (2018) Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol. 2018 Apr 30. [DOI]

top of page


J.-F. Dallery, N. Lapalu, A. Zampounis, S. Pigné, I. Luyten, J. Amselem, A. H. J. Wittenberg, S. Zhou, M. V. de Queiroz, G. P. Robin, A. Auger, M. Hainaut, B. Henrissat, K.-T. Kim, Y.-H. Lee, O. Lespinet, D. C. Schwartz, M. R. Thon, and R. J. O’Connell, (2017), Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters, BMC Genomics, vol. 18, no. 1, p. 667 [DOI]

Brandhoff B, Simon A, Dornieden A, Schumacher J. (2017). Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet. 2017 Apr 5. [DOI]

Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 2017 Apr;214(2):619-631. [DOI]

Adam-Blondon AF, Alaux M, Durand S, Letellier T, Merceron G, Mohellibi N, Pommier C, Steinbach D, Alfama F, Amselem J, Charruaud D, Choisne N, Flores R, Guerche C, Jamilloux V, Kimmel E, Lapalu N, Loaec M, Michotey C, Quesneville H. Mining Plant Genomic and Genetic Data Using the GnpIS Information System. Methods Mol Biol. 2017;1533:103-117. [DOI]

top of page


Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, Pradier JM, Amselem J, Collado IG, Viaud M. (2016). The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol. 2016 Oct 6. pii: S1087-1845(16)30111-6. [DOI]

Cohrs KC, Simon A, Viaud M, Schumacher J. (2016). Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol. 2016 Jun 27. [DOI]

Viaud M, Schumacher J, Porquier A, Simon A. (2016). Regulation of secondary metabolism in the grey mould fungus Botrytis cinerea. In : “Host - Pathogen Interaction: Microbial Metabolism, Pathogenicity and Antiinfectives, Part B: Adaptation of microbial metabolism in host/fungus-interactions”. G Unden, E Thines & A Schüffler eds. Wiley-Blackwell. [link]

Zhang L, Lubbers RJ, Simon A, Stassen JH, Vargas Ribera PR, Viaud M, van Kan JA. (2016). A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol. 2016 Apr;100(2):247-62. [DOI]

top of page

Some publications where the platform is acknowledged


Rutter BD, Chu TTH, Zajt KK, Dallery JF, O'Connell RJ and Innes RW (2022) Isolation and Characterization of Extracellular Vesicles from the Fungal Phytopathogen Colletotrichum higginsianum. [BioRXIV]

Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, Hauser A, Hahn M, Weiberg A. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. Genome Biol. 2021 Aug 16;22(1):225. [DOI]

Carrere S, Gouzy J. myGenomeBrowser: building and sharing your own genome browser. Bioinformatics. 2017 Apr 15;33(8):1255-1257. [DOI]

top of page