Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal logo Université Paris Saclay

Home page

Zone de texte éditable et éditée et rééditée

Publications -


Geistodt-Kiener A, Totozafy JC, Le Goff G, Vergne J, Sakai K, Ouazzani J, Mouille G, Viaud M, O’Connell RJ, Dallery JF (2023) Yeast-based heterologous production of the Colletochlorin family of fungal secondary metabolites. Metabolic Engineering. 80:216-231. [DOI]

Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery JF, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. Mol Plant Pathol. 2023 Jul 31. doi: 10.1111/mpp.13378. [DOI]

Oliveira L, Chevrollier N, Dallery JF, O'Connell RJ, Lebrun MH, Viaud M, Lespinet O. CusProSe: a customizable protein annotation software with an application to the prediction of fungal secondary metabolism genes. Sci Rep. 2023 Jan 25;13(1):1417. [DOI]

top of page


Bissaro B, Sayo K, Nishiuchi T, Díaz-Rovira AM, Hage H, Ribeaucourt D, Haon M, Grisel S, Simaan AJ, Beisson F, Forget SM, Brumer H, Rosso M-N, Guallar V, O’Connell R, Lafond M, Kubo Y, Berrin J-G. Tandem metalloenzymes gate plant cell entry by pathogenic fungi. Sci. Adv. 2022 8, eade9982 [DOI]

Alvarez-Diaz JC, Laugé R, Delannoy E, Huguet S, Paysant-Le Roux C, Gratias A, Geffroy V. Genome-Wide Transcriptomic Analysis of the Effects of Infection with the Hemibiotrophic Fungus Colletotrichum lindemuthianum on Common Bean. Plants (Basel). 2022 Jul 31;11(15):1995. [DOI]

Pinto AA, Barúa JE, Almeida MO, Viaud M, Zorrilla D, Collado IG, Macías-Sánchez AJ, Durán-Patrón R. Structural and biosynthetic studies of botrycinereic acid, a new cryptic metabolite from the fungus Botrytis cinerea. Bioorg Chem. 2022 Jun 20;127:105979. [DOI]

Simon A., Mercier A., Gladieux P., Poinssot B., Walker AS, Viaud V. Botrytis cinerea strains infecting grapevine and tomato display contrasted repertoires of accessory chromosomes, transposons and small RNAs. Peer Community Journal, Volume 2 (2022), article no. e83 - 10.24072/pcjournal.211 [DOI] bioRxiv 2022.03.07.483234 [DOI]

Rubiato HR, Liu M, O'Connell RJ, Nielsen ME (2022) Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens. eLife 2022;11: e73487 [DOI]

Rutter BD, Chu TT, Dallery JF, Zajt KK, O'Connell RJ, Innes RW. The development of extracellular vesicle markers for the fungal phytopathogen Colletotrichum higginsianum. J Extracell Vesicles. 2022 May;11(5):e12216. [DOI]

top of page


Takahara H, Yamaguchi S, Omura N, Nakajima S, Otoku K, Tanaka S, Ogura K, Kleemann J and O’Connell R (2021) The Colletotrichum higginsianum secreted effector protein ChEC91 induces plant cell death. Journal of General Plant Pathology 87: 344-353. [DOI]

Rouxel T, Genin S, Viaud M (2021). Effecteurs des agents phytopathogènes : à la croisée des chemins entre manipulation et induction des réactions de défense des plantes. In: “L'immunité des plantes - Pour des cultures résistantes aux maladies ». C Lannou, D Roby, V Ravigné, M Hannachi, B Moury eds. Quae. Prix Roberval 2021 dans la catégorie « Enseignement supérieur » [link]

Moraga J, Izquierdo-Bueno Reina I, Pinedo C, Hernández-Galán R, Viaud M, Collado IG. Impairment of botrydial production in Botrytis cinerea allows the isolation of undescribed polyketides and reveals new insights into the botcinins biosynthetic pathway. Phytochemistry. 2021 Mar;183:112627. [DOI]

Clairet C, Lapalu N, Simon A, Soyer JA, Viaud M, Zehraoui E, Dalmais B, Fudal I, Ponts N. Nucleosome patterns in four plant pathogenic fungi with contrasted genome structures. bioRxiv 2021.04.16.439968 [DOI] [PCI Genomics]

Mercier A, Simon A, Lapalu N, Giraud T, Bardin M, Walker AS, Viaud M, Gladieux P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea. Phytopathology. 2021 Apr 8. Epub ahead of print. [DOI] [BioRXIV]

top of page


Suárez I, González-Rodríguez VE, Viaud M, Garrido C, Collado IG. Identification of the sesquiterpene cyclase entailed in the biosynthesis of (+)-4-epi-eremophil-9-en-11-ol derivatives isolated from Botrytis cinerea. ACS Chem Biol. 2020 Sep 21. doi: 10.1021/acschembio.0c00561. Epub ahead of print. PMID: 32955237. [DOI]

Dallery JF, Zimmer M, Halder V, Suliman M, Pigné S, Le Goff G, Gianniou D, Trougakos IP, Ouazzani J, Gasperini D, O'Connell RJ. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. J Exp Bot. 2020 Feb 1. [DOI]

Vignatti P, Gonzalez ME, Jofré EC, Bolívar-Anillo HJ, Moraga J, Viaud M, Collado IG, Pieckenstain FL. Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria. Fungal Biol. 2020 Jan;124(1):54-64. doi: 10.1016/j.funbio.2019.11.003. Epub 2019 Nov 15. [DOI]

top of page


de Vallée A, Bally P, Bruel C, Chandat L, Choquer M, Dieryckx C, Dupuy JW, Kaiser S, Latorse MP, Loisel E, Mey G, Morgant G, Rascle C, Schumacher J, Simon A, Souibgui E, Viaud M, Villalba F, Poussereau N (2019). A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants? Frontiers in Microbiology. [DOI]

Kilani J, Davanture M, Simon A, Zivy M, Fillinger S (2019). Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways. J Proteomics. 2019 Nov 13;212:103580. [DOI]

Mercier A, Carpentier F, Duplaix C, Auger A, Pradier J-M, Viaud M, Gladieux P, Walker A-S (2019). The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host‐specialized and generalist populations. Environmental microbiology. DOI : 10.1111/1462-2920.14829 [DOI]

Dallery J-F, Adelin E, Le Goff G, Pigné S, Auger A, Ouazzani J, O'Connell RJ (2019). H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum. Molecular Plant Pathology. DOI: 10.1111/mpp.12795 [DOI]

Porquier A, Moraga J, Morgant G, Dalmais B, Simon A, Sghyer H, Collado IG, Viaud M. (2019). Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics. DOI: 10.1007/s00294-019-00952-4 [DOI]

Dallery J-F, Le Goff G, Adelin E, Iorga BI, Pigné S, O’Connell RJ, Ouazzani J (2019). Deleting a chromatin remodeling gene increases the diversity of secondary metabolites produced by Colletotrichum higginsianum. Journal of Natural Products. DOI: 10.1021/acs.jnatprod.8b00796 [DOI]

Collemare J, O'Connell RJ, Lebrun M-H (2019). Non-proteinaceous effectors: the terra incognita of plant-fungal interactions. New Phytologist. DOI: 10.1111/nph.15785 [DOI]

Anasontzis GE,  Lebrun M-H,  Haon M,  Champion C,  Kohler A, Lenfant N, Martin F, O’Connell RJ, Riley R, Grigoriev IV, Henrissat B, Berrin J-G, Rosso M-N (2019). Broad‐specificity GH131 β‐glucanases are a hallmark of Fungi and Oomycetes that colonise plants. Environmental Microbiology DOI: 10.1111/1462-2920.14596 [DOI

top of page


Robin GP, Kleemann J, Neumann U, Cabre L, Dallery J-F, Lapalu N, O’Connell RJ. 2018. Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, Golgi bodies and microtubules. Frontiers in Plant Science, 02 May 2018 [DOI]

Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. (2018) Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol. 2018 Apr 30. [DOI]

top of page


J.-F. Dallery, N. Lapalu, A. Zampounis, S. Pigné, I. Luyten, J. Amselem, A. H. J. Wittenberg, S. Zhou, M. V. de Queiroz, G. P. Robin, A. Auger, M. Hainaut, B. Henrissat, K.-T. Kim, Y.-H. Lee, O. Lespinet, D. C. Schwartz, M. R. Thon, and R. J. O’Connell, (2017), Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters, BMC Genomics, vol. 18, no. 1, p. 667 [DOI]

Quijada-Morin N, Garcia F, Lambert K, Walker AS, Tiers L, Viaud M, Sauvage FX, Hirtz C, Saucier C. (2017). Strain effect on extracellular laccase activities from Botrytis. Australian Journal of Grape and Wine Research. [DOI]

J. Acevedo-Garcia, K. Gruner, A. Reinstädler, A. Kemen, E. Kemen, L. Cao, F. L. W. Takken, M. U. Reitz, P. Schäfer, R. J. O’Connell, S. Kusch, H. Kuhn, and R. Panstruga, (2017), The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens, Sci. Rep., vol. 7, no. 1, p. 9319 [DOI]

Franco Dos Santos G, Moraga J, Takahashi JA, Viaud M, Hanson JR, Hernández Galán R, Collado IG. (2017). The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the Bcbot4 null mutant of Botrytis cinerea. Org Biomol Chem. 2017 Jun 27;15(25):5357-5363. [DOI]

Brandhoff B, Simon A, Dornieden A, Schumacher J. (2017). Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet. 2017 Apr 5. [DOI]

top of page


Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, Pradier JM, Amselem J, Collado IG, Viaud M. (2016). The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol. 2016 Oct 6. pii: S1087-1845(16)30111-6. [DOI]

Zampounis A,Pigné S, Dallery J-F, Wittenberg AHJ, Zhou S, Schwartz DC, Thon MR, O’Connell RJ (2016) Genome sequence and annotation of Colletotrichum higginsianum, causal agent of Crucifer Anthracnose Disease. Genome Announcements4: e00821-16 [DOI]

Moraga J, Dalmais B, Izquierdo-Bueno I, Aleu J, Hanson JR, Hernández-Galán R, Viaud M, Collado IG. (2016). Genetic and molecular basis of botrydial biosynthesis. Connecting cytochrome P450-encoding genes to biosynthetic intermediates. ACS Chem Biol. 2016 Aug 16. [DOI]

Cohrs KC, Simon A, Viaud M, Schumacher J. (2016). Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol. 2016 Jun 27. [DOI]

Collado IG, Viaud M. Secondary metabolism in Botrytis cinerea: Combining genomic and metabolomic approaches (2016). In: Botrytis – the fungus, the pathogen and its management in agricultural systems. S Fillinger & Y Elad eds. Springer. [link]

Viaud M, Schumacher J, Porquier A, Simon A. (2016). Regulation of secondary metabolism in the grey mould fungus Botrytis cinerea. In : “Host - Pathogen Interaction: Microbial Metabolism, Pathogenicity and Antiinfectives, Part B: Adaptation of microbial metabolism in host/fungus-interactions”. G Unden, E Thines & A Schüffler eds. Wiley-Blackwell. [link]

Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, Hiruma K, Neumann U, Shinya T, Kombrink E, Shibuya N, Thomma BPHJ, O’Connell RJ (2016)  Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. New Phytologist211: 1323-1337 [DOI]

Pinedo C, Moraga J, Barua J, González-Rodríguez VE, Aleu J, Duran R, Macías Sánchez AJ, Hanson JR, Viaud M, Hernández-Galán R, Garrido C, Collado IG. (2016). Chemically-induced cryptic sesquiterpenoids and expression of sesquiterpene cyclases in Botrytis cinerea revealed new sporogenic (+)-4-epieremophil-9-en-11-ols. ACS Chem Biol. 2016 May 20;11(5):1391-400.[DOI]

Hacquard S, Kracher B, Hiruma K, Münch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery J-F, Hainaut M, Henrissat B, Lespinet O, Sacristán S, van Themaat EVL, Kemen E, McHardy AC, Schulze-Lefert P, O’Connell RJ (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications7:11362 [DOI]

Hiruma K, Gerlach N, Sacristán N, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ, Schulze-Lefert P (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status-dependent. Cell165: 1-11 [DOI]

Zhang L, Lubbers RJ, Simon A, Stassen JH, Vargas Ribera PR, Viaud M, van Kan JA. (2016). A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol. 2016 Apr;100(2):247-62. [DOI]

top of page


Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Tdra L, Poinssot B, Viaud M (2015). Analysis of the molecular dialogue between gray mold (Botrytis cinerea) and grapevine (Vitis vinifera) reveals a clear shift in defense mechanisms during berry ripening. Mol Plant Microbe Interact. 2015 Nov;28(11):1167-80. [DOI]

Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJ, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann HW, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng YQ, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJ, Ehling-Schulz M, Entian KD, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon HJ, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O'Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet JL, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO (2015). Minimum Information about a Biosynthetic Gene cluster. Nat Chem Biol. 2015 Aug 18;11(9):625-31. [DOI]

Kubo Y, Fujihara N, Harata K, Neumann U, Robin GP, O’Connell R. (2015) Colletotrichum orbiculare FAM1 encodes a novel Woronin body-associated Pex22 peroxin required for appressorium-mediated plant infection. mBio 6: e01305-15 [DOI]

Viefhues A, Schlathoelter I, Simon A, Viaud M, Tudzynski P (2015). Unravelling the function of the response regulator BcSkn7 in the stress signaling network of Botrytis cinerea. Eukaryot Cell. 2015 Jul;14(7):636-51. [DOI]

Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B (2015). The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulence. Mol Plant Microbe Interact. 2015 Jun;28(6):659-74. [DOI]

top of page


Damm U, O’Connell RJ, Crous PW, Groenewald JZ. (2014) The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops. Studies in Mycology 79: 49-84. [DOI]

Kim H, O'Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P. (2014) The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant Journal 79: 835-847. [DOI]

Hahn M, Viaud M, van Kan J (2014). The Genome of Botrytis cinerea, a Ubiquitous Broad Host Range Necrotroph. R. A. Dean et al. (eds.), Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens, Springer-Verlag Berlin Heidelberg 2014. [DOI]

Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014). The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea. PLoS Genet 10(1): e1004040. [DOI]

Doehlemann G, Requena N, Patrick Schaefer P, Brunner F, O'Connell R, Parker JE (2014) Reprogramming of plant cells by filamentous plant-colonizing microbes. New Phytologist. [DOI]

Crouch J, O’Connell R, Gan P, Buiate E, Torres M, Beirn L, Shirasu K, Vaillancourt L (2014) The Genomics of Colletotrichum. In Genomics of Plant-Associated Fungi: Monocot Pathogens, pp. 69-102, Ed. by RA Dean, A Lichens-Park, C Kole, Springer-Verlag (Berlin-Heidelberg). [DOI]

top of page


Simon A, Dalmais B, Morgant G, Viaud M (2013). Screening of a Botrytis cinerea one-hybrid library reveals a Cys(2)His(2) transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol. 2013 Mar;52:9-19. [DOI]

Massaroli M, Moraga J, Bastos Borges K, Ramírez-Fernández J, Viaud M, González Collado I, Durán-Patrón R, Hernández-Galán R (2013). A shared biosynthetic pathway for botcinins and botrylactones revealed through gene deletions. Chembiochem. 2013 Jan 2;14(1):132-6. [DOI]

Schumacher J, Gautier A, Morgant G, Studt L, Ducrot PH, Le Pêcheur P, Azeddine S, Fillinger S, Leroux P, Tudzynski B, Viaud M (2013). A Functional Bikaverin Biosynthesis Gene Cluster in Rare Strains of Botrytis cinerea Is Positively Controlled by VELVET. PLoS ONE 8(1): e53729. [DOI]

Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O’Connell, R.J., Narusaka, Y., Takano, Y., Kubo, Y. & Shirasu, K. (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist 197: 1236-1249. [DOI]

top of page


O’Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., , Alkan, N., Altmüller, J., Alvarado‐Balderrama, L., Bauser, C.L., Becker, C., Birren, B.W., Chen, Z., Choi, J., Crouch, J.A., Duvick, J.P., Farman, M.L., Gan, P., Heiman, D., Henrissat, B., Howard, R.J., Kabbage, M., Koch, C., Kubo, Y., Law, A.D., Lebrun, M.‐H., Lee, Y.‐H., Miyara, I., Moore, N., Neumann, U., Panaccione, D.G., Panstruga, R., Place, M., Proctor, R.H., Prusky, D., Rech, G., Reinhardt, R., Rollins, J.A., Rounsley, S., Schardl, C.L., Schwartz, D.C., Shenoy, N., Shirasu, K., Sikhakolli, U.R., Stüber, K., Sukno, S.A., Sweigard, J.A., Takano, Y., Takahara, H., Trail, F., van der Does, H.C., Voll, L.M., Will, I., Young, S., Zeng, Q., Zhang, J., Zhou, S., Dickman, M.B., Schulze‐Lefert, P., Ver Loren van Themaat, E., Ma, L.‐J., & Vaillancourt, L.J. (2012) Life‐style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics44: 1060‐1065. [DOI]

Antal Z, Rascle C, Cimerman A, Viaud M, Billon-Grand G, Choquer M., Bruel C (2012). The Homeobox BcHOX8 Gene in Botrytis Cinerea Regulates Vegetative Growth and Morphology. PLoS One 2012;7(10): e48134. [DOI]

Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J, Collado IG, Viaud M, Tudzynski B (2012). Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea. PLoS One. 2012;7(10):e47840. [DOI]

Aguileta G, Lengelle J, Chiapello H, Giraud T, Viaud M, Fournier E, Rodolphe F, Marthey S, Ducasse A, Gendrault A, Poulain J, Wincker P, Gout L (2012). Genes under positive selection in a model plant pathogenic fungus, Botrytis. Infect Genet Evol. 2012 Jul;12(5):987-96. [DOI]

Kleemann, J., Rincon‐Rivera, L.‐J., Takahara, H., Neumann, U., Ver Loren van Themaat, E., van der Does, H.C., Hacquard, S., Stüber, K., Will, I., Schmalenbach, W., Schmelzer, E. & O’Connell, R.J. (2012) Sequential delivery of host‐induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. Plos Pathogens8: e1002643. [DOI]

Temme N, Oeser B, Massaroli M, Heller J, Simon A, González Collado I, Viaud M, Tudzynski P (2012). BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea. Mol Plant Pathol. 2012 Feb 1. [DOI]

Simon M, Simon A, Martins F, Botran L, Tisné S, Granier F, Loudet O, Camilleri C (2012). DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions. Plant J. 2012 Mar;69(6):1094-101. [DOI]

Viaud M, Adam-Blondon AF, Amselem J, Bally P, Cimerman A, Dalmais B, Lapalu N, Lebrun MH, Poinssot B, Pradier JM, Simon A (2012). Le génome de Botrytis décrypté. Revue des Oenologues, 142. [link]

top of page


Walker AS, Gautier AL, Confais J, Martinho D, Viaud M, Le Pêcheur P, Dupont J, Fournier E. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology. 2011 Dec;101(12):1433-45. [DOI]

Amselem J, Cuomo C, van Kan J, Viaud M, Benito E, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Beever R, Anthouard V, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collemare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MA, Dickman MB. (2011). Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics. 2011 Aug;7(8):e1002230 [DOI]

Walker AS., Bouguennec A., Confais J., Morgant G., Leroux P. (2011). Evidence of host-range expansion from new powdery mildew (Blumeria graminis) infections of triticale (x triticosecale) in France. Plant Pathology (GB), vol 60 n°2, 207-220 [DOI]

Dalmais B, Schumacher J, Moraga J, Le Pêcheur P, Tudzynski B, Collado IG, Viaud M. (2011). The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Molecular Plant Pathology. 2011 Aug;12(6):564-79 [DOI]

Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GH, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ. (2011). Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun. 2011 Feb;2:202. [DOI]

Micali, C.O., Neumann, U., Grunewald, D., Panstruga, R., & O’Connell, R. (2011) Biogenesis of a specialized plant‐fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cellular Microbiology13: 210–226. [DOI]

Takahara H, Endl E, O’Connell R (2011) Isolation of fungal infection structures from plant tissue by flow cytometry for cell-specific transcriptome analysis. In "cDNA Libraries: Methods and Applications", pp. 3-13, Ed. by C. Lu, J. Browse and J. Wallis, Springer/Humana Press, Methods in Molecular Biology Series. [DOI]

top of page


Simon A, Biot E. (2010). ANAIS: Analysis of NimbleGen Arrays Interface. Bioinformatics 2010 Oct; 26(19):2468-9. [DOI]

Fujihara, N., Sakaguchi, A., Tanaka, S., Fujii, S., Tsuji, G., Shiraishi, T., O’Connell, R. & Kubo, Y. (2010) Peroxisome biogenesis factor PEX13 is required for appressorium‐mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Molecular Plant‐Microbe Interactions23: 436‐445. [DOI]

Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, Koga H, Nishizawa Y, O’ConnellR, Kubo Y (2010) HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biology 10: 288. [DOI]

Spanu PD, Abbott JC, Burgis TA, Ahmadinejad N, Ametz C, Amselem J, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Brown JKM, Butcher SA, Cadle‐Davidson L, Cadle‐Davidson MM, Collemare J, Cramer R, Francisco LJ, Frenkel O, Godfrey D, Gurr SJ, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, Lebrun MH, Lu X, Maekawa T, Mahanil S, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhänsli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Ridout CJ, Rott M, Sacristán S, Schmidt SM, Schön M, Schulze‐Lefert P, Skamnioti P, Soanes DM, Sommer H, Stüber K, Takahara H, Talbot NJ, Thordal‐Christensen H, Ver Loren van Themaat E, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal functional trade‐offs in extreme parasitism. Science 330: 1543‐1546. [DOI]

top of page

Archived publications -

Read more