Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Zone de texte éditable et éditée et rééditée

Isabelle Fudal

FUDAL Isabelle

Dr Isabelle Fudal
INRAE Senior Researcher, PhD, HDR


Unité Bioger (UMR 1290)
Team Effecteurs et pathogenèse chez Leptosphaeria maculans
Bâtiment 13, av. Lucien Brétignières, BP01
78850 Thiverval-Grignon


Tél. : +33 (0)1 30 81 45 90
Fax : +33 (0)1 30 81 53 06
Mail :



I am a research scientist hired at INRA in the BIOGER unit in 2006, with a background in plant pathology, molecular biology and functional genomics. My main focus was, and still is, on deciphering fungal-plant interactions. Most of my research experience was devoted to understand fungal pathogenicity and signals produced by the fungus, which induce recognition of “non-self” and disease resistance (avirulence genes or effectors). Since I was hired as a permanent scientist at INRA, I am developing functional genomics approaches on plant-fungi interactions with a particular interest to fungal effectors on the model of interaction Leptosphaeria maculans / Brassica napus. The objective of my research project is to study the possible roles of effectors on pathogenicity towards B. napus (identification, expression, regulation, evolution and functional analysis). To achieve this goal, I develop a pluri-disciplinary project combining bioinformatics, transcriptomics, functional genomics, pathogenicity studies and evolutionary genomics. Recently, I focused part of my researches on the determinism of concerted regulation of effector genes during infection and pointed out on the importance of chromatin status in this regulation. I am co-leading the INRA SPE network REacTION (network on the epigenetic mechanisms that shape plant - Bioaggressors and Symbiotic Organisms interactions)

Curriculum vitae



Senior INRAE Researcher, UMR1290 BIOGER, INRAE, Grignon

HDR, Université Paris-Sud (Orsay)

Since 2006

Permanent INRA Researcher, UMR1290 Bioger, INRA, Grignon


Postdoc, Unité PMDV, INRA, Versailles


PhD, Université Paris-Sud (Orsay)


Master Biologie, Diversité et Adaptation des Plantes Cultivées : option Phytopathologie (Paris)

1997- 2000

Engineer degree, Institut National Agronomique Paris-Grignon (INA P-G, Paris)


Clairet C, Lapalu N, Simon A, Soyer JL, Viaud M, Zehraoui E, Dalmais B, Fudal I, Ponts N (2021) Nucleosome patterns in four plant pathogenic fungi with contrasted genome structures. BioRxiv doi:

Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH (2021) Large-scale transcriptomics to dissect two years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol 19: 55

Jiquel A, Gervais J, Geistodt-Kiener A, Delourme R, Gay EJ, Ollivier B, Fudal I, Faure S, Balesdent MH, Rouxel T (2021) A gene-for-gene interaction involving a ‘late’ effector
contributes to quantitative resistance to the stem canker disease in Brassica napus. New Phytol https://doi: 10.1111/nph.17292

Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I (2021). Genome-wide mapping of histone modifications in two species of Leptosphaeria maculans showing contrasting genomic organization and host specialization. Chromosome Res

Lazar N, Mesarich CH, Petit-Houdenot Y, Talbi N, Li de la Sierra-Gallay I, Zélie E, Blondeau K, Gracy J, Ollivier B, Blaise F, Rouxel T, Balesdent MH, Idnurm A, van Tilbeurgh H, Fudal I (2020) A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins. bioRxiv

Rocafort M., Fudal I. and Mesarich C. H. (2020). Apoplastic effector proteins of plant-associated fungi and oomycetes. Current Opinion in Plant Biology  56: 9-19.

Petit-Houdenot Y., Degrave A., Meyer M., Blaise F., Ollivier B., Marais C.L., Jauneau A., Audran C., Rivas S., Veneault-Fourrey C., Brun H., Rouxel T., Fudal I. and Balesdent M.H (2019). A two genes for one gene interaction between Leptosphaeria maculans and Brassica napus. New Phytologist 223: 397-411. DOI: 10.1111/nph.15762

Fudal I., Balesdent M.H., Rouxel T. (2018). Effector biology in fungal pathogens of nonmodel crop plants. Trends in Plant ScienceDOI:

Sanchez-Vallet A., Fouché S., Fudal I., Hartmann F.E., Soyer J.L., Tellier A., Croll D. (2018). The genome biology of effector gene evolution in filamentous plant pathogens. Annual Review of Phytopathology  56: DOI: 10.1146/annurev-phyto-080516-035303

Petit-Houdenot Y., Fudal I. (2017). Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Frontiers in Plant Science  8:1072 ; DOI: 10.3389/fpls.2017.01072

Gervais J., Plissonneau C., Linglin J., Meyer M., Labadie K., Cruaud C., Fudal I., Rouxel T., Balesdent M.H. (2017). Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonisation of oilseed rape. Molecular Plant Pathology  18: 1113-1126. DOI: 10.1111/mpp.12464

Plissonneau C., Daverdin G., Ollivier B., Blaise F., Degrave A., Fudal I., Rouxel T. and Baldesdent M.H. (2016). A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytologist  209: 1613-1624. DOI: 10.1111/nph.13736

de Marchi R., Sorel M., Mooney B., Fudal I., Goslin K., Kwasniewsk, K., Ryan P. T., Pfalz M., Kroymann J., Pollmann S., Feechan A., Wellmer F., Rivas S., Graciet E. (2016). The N-end rule pathway regulates pathogen responses in plants. Scientific Reports  6. DOI : 10.1038/srep26020

SoyerJ.L., Rouxel T. and Fudal I. (2015). Chromatin-based control of effector gene expression in plant-associated fungi. Current Opinion in Plant Biology  26:51-56. DOI:10.1016/j.pbi.2015.05.025

Blondeau K., Blaise F., Graille M., Kale S.D., Linglin J., Ollivier B., Labarde A., Lazar N., Daverdin G., Balesdent M.H., Choi D.H.Y., Tyler B., Rouxel T., van Tilbeurgh H. and Fudal I. (2015). The avirulence gene AvrLm4-7 of Leptosphaeria maculans: linking crystal structure to functional and adaptive characteristics. The Plant Journal  83(4):610-624.

Soyer J.L., Hamiot A., Ollivier B., Balesdent M.H., Rouxel T. and Fudal I. (2015). The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. Molecular Plant Pathology : doi: 10.1111/mpp.12249.

Ghanbarnia K., Fudal I., Larkan N.J., Links M.G., Balesdent M.H., Profotova B., Fernando W.G.D., Rouxel T. and Borhan M.H. (2015). Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Molecular Plant Pathology  16(7):699-709. DOI: 10.1111/mpp.12228

Grandaubert J., Lowe R.G.T., Soyer J.L., Schoch C.L., Van de Wouw A.P., Fudal I., Robbertse B., Lapalu N., Links M.G., Ollivier B., Linglin J., Barbe V., Mangenot S., Cruaud C., Borhan H., Howlett B.J., Balesdent M.H. and Rouxel T. (2014). Transposable Element-assisted evolution and adaptation within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal plant pathogens. BMC Genomics  15(1):891;

Soyer J.L., El Ghalid M., Glaser N., Ollivier B., Linglin J., Grandaubert J., Balesdent M.H., Connolly L.R., Freitag M., Rouxel T. and Fudal I (2014). Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLOS Genetics  10(3): e1004227.

Delourme R., Bousset L., Ermel E., Duffé P., Besnard A.L., Marquer B., Fudal I., Linglin J., Chadoeuf J. and Brun H (2014). Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infection, Genetics and Evolution

Tyler B.M., Kale S.D., Wang Q., Tao K., Clark H.R., Drew K., Antignani V., Rumore A., Hayes T., Plett J.M., Fudal I., Gu B., Chen Q., Affeldt K.J., Berthier E., Fischer G.J., Dou D., Shan W., Keller N., Martin F., Rouxel R., Lawrence C.B. (2013). Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions  26(6): 611-616.

Balesdent M.H., Fudal I., Ollivier B., Bally P., Grandaubert J., Eber F., Chevre A.M., Leflon M. and Rouxel T. (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytologist  198: 887-898.

Daverdin G., Rouxel T., Gout L., Aubertot J.N., Fudal I., Meyer M., Parlange F., Carpezat J. and Balesdent M.H. (2012). Genome Structure and Reproductive Behaviour Influence the Evolutionary Potential of a Fungal Phytopathogen. PLOS Pathogens  8(11): e1003020.

Bourras S., Meyer M., Grandaubert J., Lapalu N., Fudal I., Linglin J., Ollivier B., Blaise F., Balesdent M.H. and Rouxel T. (2012). Incidence of Genome Structure, DNA Asymmetry and Cell Physiology on T-DNA Integration in Chromosomes of the Phytopathogenic Fungus Leptosphaeria maculans. Genes Genomes Genetics  2: 891-904.

Rouxel T., Grandaubert J., Hane J.K., Hoede C., van de Wouw  A.P., Couloux  A., Dominguez V., Anthouard V., Bally P., Bourras S., Cozijnsen A.J., Ciuffetti L.M., Degrave A., Dilmaghani A., Duret L., Fudal I., Goodwin S.B., Gout L., Glaser N., Linglin J., Kema G.H.G., Lapalu N., Lawrence C.B., May K., Meyer M., Ollivier B., Poulain J., Simon A., Stachowiak A., Turgeon B.G., Tyler B.M., Vincent D., Weissenbach J., Amselem J., Quesneville H., Oliver R.P., WinckerP., Balesdent M.H., Howlett B.J. (2011). Effectors diversification within compartments of the Leptosphaeria maculans genome affected by RIP mutations. Nature communications  2: 202.

Kale S.D., Gu B., Capelluto, D.F.S., Dou D., Cronin A., Arredondo F.D., Feldman E., Fudal I., Rouxel T., Lawrence C.B., Shan W. and Tyler B.M. (2010). External Lipid PI-3-P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells. Cell 142: 284-295.

Fudal I., Ross S., Brun H., Besnard A.L., Ermel M., Kuhn M.L., Balesdent M.H. and Rouxel T. (2009). Repeat-induced point mutation (RIP) as an alternative mechanism of evolution towards virulence in Leptosphaeria maculans. Molecular Plant-Microbe Interactions  22 (8): 932-941.

Parlange, F.; Daverdin, G.; Fudal, I.; Kuhn, M.L.; Balesdent, M.H.; Blaise, F.; Grezes-Besset, B.; Rouxel, T. (2009). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology  71(4):851-63.

Collemare J., Pianfetti M., Houille A.E., Morin V., Camborde L., Gagey M.J., Barbisan C., Fudal I., Lebrun M.H., Böhnert H.U. (2008). Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist 179 (1), 196-208.

Fudal I., Ross S., Gout L., Blaise F., Kuhn M.L., Eckert M.R., Cattolico L., Bernard-Samain S., Balesdent M.H. and Rouxel T. (2007). Heterochromatin-like regions as ecological niches for avirulence genes in Leptosphaeria maculans genome: map-based cloning of AvrLm6. Molecular Plant-Microbe Interaction 20: 459-470.

Fudal I., Collemare J., Böhnert H.U., Melayah D. and Lebrun M.H. (2007). Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryotic Cell 6:546-554.

Gout L., Fudal I., Kuhn M.L., Blaise F., Eckert M., Cattolico L., Balesdent M.H. and Rouxel T. (2006). Lost in the middle of nowhere: the AvrLm1 avirulence gene of the dothideomycete Leptosphaeria maculans. Molecular Microbiology  60: 67-80.

Fudal I., Böhnert H.U., Tharreau D., and Lebrun M.H. (2005). Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genetics and Biology  42: 761-772.

Couch B.C., Fudal I., Lebrun M.H., Tharreau D., Valent B., van Kim P., Kohn L.M. (2005). Origins of host specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics  170: 613-630.

Böhnert H.U., Fudal I., Dioh W., Tharreau D., Notteghem J.L. and Lebrun M.H. (2004). A putative polyketide synthase / peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. The Plant Cell16: 2499-2513.