Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

Home page

Zone de texte éditable et éditée et rééditée

Biosynthesis of Abscisic Acid (ABA): Plants and Fungi use different pathways

Viaud's publication in Environmental Microbiology
BIOGER scientist Muriel Viaud and collab. published an article in which they investigated the genome of an ABA-overproducing strain of the gray mold agent Botrytis cinerea and identified a sesquiterpene cyclase as the key enzyme responsible for the biosynthesis of ABA in fungi.

Strikingly, some phytopathogenic fungi are able to produce the well-known plant hormone abscissic acid (ABA). While biosynthesis of ABA in plants is derived from carotenoid, chemistry studies demonstrated that fungal ABA is produced by the direct cyclisation of farnesyl diphosphate (FPP) followed by oxidation steps. Previous studies in Botrytis cinerea identified a cluster of co-localized genes (Bcaba1 to Bcaba4) encoding P450 mono-oxygenases that are responsible for the final oxidation steps, but the key enzyme required for the cyclisation of FPP in fungi remained unknown so far.  

In collaboration with the groups of I. G. Collado and C. Garrido (University of Cadiz, Spain), we identified the gene Bcaba5 encoding the sesquiterpene cyclase (STC) acting as the key enzyme for ABA production in B. cinerea. While fungal genes contributing to the biosynthesis of one secondary metabolite are usually clustered at one genomic locus, Bcaba5 is physically independent from the locus that contains Bcaba1 to Bcaba4. Inactivation of the Bcaba5 gene confirmed that the fungal ABA biosynthesis route is distinct from the plant one and paved the ways for further studies (i) to decipher the fungal ABA biosynthetic pathway and to improve the industrial production of this hormone, (ii) to investigate the evolution of un-clustered secondary metabolism genes in fungi, and finally (iii) to elucidate the enigmatic role of ABA in fungal/plant interactions.


Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier JM, Le Pêcheur P, Mercier A, Walker AS, Garrido C, Collado IG, Viaud M. Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environmental Microbiology. 2018 Apr 30. doi: 10.1111/1462-2920.14258.