Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu INRAE Université Paris-Saclay AgroParisTech Agronomy joint research unit

Home page

AGRONOMIE

Forecasting severe grape downy mildew attacks using machine learning.

12 March 2020

Chen M, Brun F, Raynal M, Makowski D, 2020, PLoS ONE 15(3): e0230254

Abstract
Grape downy mildew (GDM) is a major disease of grapevine that has an impact on both the yields of the vines and the quality of the harvested fruits. The disease is currently controlled by repetitive fungicide treatments throughout the season, especially in the Bordeaux vineyards where the average number of fungicide treatments against GDM was equal to 10.1 in 2013. Reducing the number of treatments is a major issue from both an environmental and a public health point of view. One solution would be to identify vineyards that are likely to be heavily attacked in spring and then apply fungicidal treatments only to these situations. In this perspective, we use here a dataset including 9 years of GDM observations to develop and compare several generalized linear models and machine learning algorithms predicting the probability of high incidence and severity in the Bordeaux region. The algorithms tested use the date of disease onset and/or average monthly temperatures and precipitation as input variables. The accuracy of the tested models and algorithms is assessed by year-by-year cross validation. LASSO, random forest and gradient boosting algorithms show better performance than generalized linear models. The date of onset of the disease has a greater influence on the accuracy of forecasts than weather inputs and, among weather inputs, precipitation has a greater influence than temperature. The best performing algorithm was selected to evaluate the impact of contrasted climate scenarios on GDM risk levels. Results show that risk of GDM at bunch closure decreases with reduced rainfall and increased temperatures in April-May. Our results also show that the use of fungicide treatment decision rules that take into account local characteristics would reduce the number of treatments against GDM in the Bordeaux vineyards compared to current practices by at least 50%.

Site : https://doi.org/10.1371/journal.pone.0230254