Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu INRAE AgroParisTech Université Paris-Saclay Institut Carnot Plant2PRo Agronomy joint research unit

Home page


Forecasting severe grape downy mildew attacks using machine learning.

12 March 2020

Chen M, Brun F, Raynal M, Makowski D, 2020, PLoS ONE 15(3): e0230254

Grape downy mildew (GDM) is a major disease of grapevine that has an impact on both the yields of the vines and the quality of the harvested fruits. The disease is currently controlled by repetitive fungicide treatments throughout the season, especially in the Bordeaux vineyards where the average number of fungicide treatments against GDM was equal to 10.1 in 2013. Reducing the number of treatments is a major issue from both an environmental and a public health point of view. One solution would be to identify vineyards that are likely to be heavily attacked in spring and then apply fungicidal treatments only to these situations. In this perspective, we use here a dataset including 9 years of GDM observations to develop and compare several generalized linear models and machine learning algorithms predicting the probability of high incidence and severity in the Bordeaux region. The algorithms tested use the date of disease onset and/or average monthly temperatures and precipitation as input variables. The accuracy of the tested models and algorithms is assessed by year-by-year cross validation. LASSO, random forest and gradient boosting algorithms show better performance than generalized linear models. The date of onset of the disease has a greater influence on the accuracy of forecasts than weather inputs and, among weather inputs, precipitation has a greater influence than temperature. The best performing algorithm was selected to evaluate the impact of contrasted climate scenarios on GDM risk levels. Results show that risk of GDM at bunch closure decreases with reduced rainfall and increased temperatures in April-May. Our results also show that the use of fungicide treatment decision rules that take into account local characteristics would reduce the number of treatments against GDM in the Bordeaux vineyards compared to current practices by at least 50%.

Site :